55 research outputs found

    PANDA: Cold three axes spectrometer

    Get PDF
    The cold three axes spectrometer PANDA, operated by JCNS, Forschungszentrum Jülich, offers high neutron flux over a large dynamic range keeping the instrumental background comparably low

    Analyse magnetischer Strukturen an Seltenerd-Cu2-Verbindungen mittels magnetischer Röntgen- und Neutronenbeugung

    Get PDF
    Die intermetallischen Verbindungen der RCu2-Serie (R = Seltenerd-Elemente) zeigen eine ungewöhnliche Vielfalt von magnetischen Strukturen in Abhängigkeit von Temperatur und äußerem Magnetfeld. Diese Vielfalt ist verursacht durch das Wechselspiel von indirekter Austauschwechselwirkung und anisotropem kristallelektrischen Feld. Die RCu2-Verbindungen kristallisieren in der CeCu2-Struktur, welche als orthorhombische Verzerrung der hexagonalen AlB2-Struktur verstanden werden kann. Ziel der vorliegenden Arbeit ist es, RCu2-Verbindungen mit magnetischer Röntgenbeugung bzw. resonanter magnetischer Röntgenstreuung zu untersuchen, teilweise ergänzt durch Neutronenbeugungsexperimente. Dem zur Neutronenbeugung komplementären Charakter der Röntgenmethoden entspricht es, dass dabei spezielle Details der magnetischen Strukturen untersucht werden. Zusätzlich zur Untersuchung der magnetischen Eigenschaften und Strukturen und zur Suche nach den Ursachen für die auftretenden Phasenübergänge werden magnetoelastische Kopplungen in der pseudohexagonalen Substanzgruppe betrachtet (R = Nd, Gd, Tb, Dy). Der Zusammenhang von kristalliner und magnetischer Struktur wird auch unter Variation und Mischung der Elemente auf dem Seltenerd-Platz erforscht (Tb(1-x)DyxCu2, Tb(1-x)PrxCu2, Dy(1-x)YxCu2). Für die Untersuchung des elementspezifischen Magnetismus bei Vorhandensein mehrerer magnetischer Atomsorten in einem Kristall ist dabei die resonante magnetische Röntgenstreuung die einzig verfügbare Methode. Im Tb0.5Dy0.5Cu2 wird dabei ein unerwartetes Verhalten im Temperaturverlauf der magnetischen Strukturen beobachtet. Ergebnisse aus ergänzenden Neutronenbeugungsexperimenten werden ebenfalls vorgestellt und mittels Rietveld-Verfeinerung der kristallinen und magnetischen Strukturen ausgewertet. Im Ergebnis der Arbeit sind die untersuchten magnetischen Strukturen näher bekannt. Magnetoelastische Wechselwirkungen werden unter Verwendung von Beugungsmethoden neuartig gemessen.The intermetallic compounds of the RCu2 series (R = rare earths) show a large variety of magnetic structures depending on temperature and external field, mainly caused by the interplay of an indirect exchange interaction and the anisotropy of the crystalline electric field. The RCu2 compounds crystallize in the CeCu2 structure, which can be described as an orthorhombic distortion of the hexagonal AlB2 structure. The aim of the present work is the investigation of RCu2 compounds by using resonant and nonresonant magnetic x-ray scattering, supplemented by neutron scattering. Because of the complementarity of magnetic x-ray and neutron scattering this investigation reveals new details of the magnetic structures of the studied compounds. Magnetic properties and magnetic structures are investigated as well as magnetic phase transitions and magneto-elastic coupling in the pseudohexagonal compounds. The correlation between the crystallographic structure and the magnetic structures is studied for different rare earths (R = Nd, Gd, Tb, Dy) but also for partial substitution of magnetic rare earths by magnetic or nonmagnetic ions on the rare earth site (Tb(1-x)DyxCu2, Tb(1-x)PrxCu2, Dy(1-x)YxCu2). Resonant magnetic x-ray scattering is the only method available to investigate the element specific magnetism in crystals with different magnetic ions. By the study of the Tb resonance and the Dy resonance on Tb0.5Dy0.5Cu2 an unexpected developement of the magnetic structures with temperature is observed. The results of supplementary neutron scattering experiments are presented and analyzed by Rietveld refinement of the crystallographic and magnetic structures, mainly focussed on TbCu2. In summary, new insights into the different magnetic structures of RCu2 compounds are gained. The strong magneto-elastic coupling is studied by different scattering methods applied to this problem for the first time

    Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO4_4

    Full text link
    A phase transition is often accompanied by the appearance of an order parameter and symmetry breaking. Certain magnetic materials exhibit exotic hidden-order phases, in which the order parameters are not directly accessible to conventional magnetic measurements. Thus, experimental identification and theoretical understanding of a hidden order are difficult. Here we combine neutron scattering and thermodynamic probes to study the newly discovered rare-earth triangular-lattice magnet TmMgGaO4_4. Clear magnetic Bragg peaks at K points are observed in the elastic neutron diffraction measurements. More interesting, however, is the observation of sharp and highly dispersive spin excitations that cannot be explained by a magnetic dipolar order, but instead is the direct consequence of the underlying multipolar order that is "hidden" in the neutron diffraction experiments. We demonstrate that the observed unusual spin correlations and thermodynamics can be accurately described by a transverse field Ising model on the triangular lattice with an intertwined dipolar and ferro-multipolar order.Comment: Published versio

    Log-Gaussian processes for AI-assisted TAS experiments

    Full text link
    To understand the origins of materials properties, neutron scattering experiments at three-axes spectrometers (TAS) investigate magnetic and lattice excitations in a sample by measuring intensity distributions in its momentum (Q) and energy (E) space. The high demand and limited availability of beam time for TAS experiments however raise the natural question whether we can improve their efficiency or make better use of the experimenter's time. In fact, using TAS, there are a number of scientific questions that require searching for signals of interest in a particular region of Q-E space, but when done manually, it is time consuming and inefficient since the measurement points may be placed in uninformative regions such as the background. Active learning is a promising general machine learning approach that allows to iteratively detect informative regions of signal autonomously, i.e., without human interference, thus avoiding unnecessary measurements and speeding up the experiment. In addition, the autonomous mode allows experimenters to focus on other relevant tasks in the meantime. The approach that we describe in this article exploits log-Gaussian processes which, due to the log transformation, have the largest approximation uncertainties in regions of signal. Maximizing uncertainty as an acquisition function hence directly yields locations for informative measurements. We demonstrate the benefits of our approach on outcomes of a real neutron experiment at the thermal TAS EIGER (PSI) as well as on results of a benchmark in a synthetic setting including numerous different excitations.Comment: Main: 22 pages, 5 figures | Extended Data: 8 figures | Supplementary Information: 5 pages, 2 figure

    Electron-doping evolution of the low-energy spin excitations in the iron arsenide BaFe2x_{2-x}Nix_{x}As2_{2} superconductors

    Full text link
    We use elastic and inelastic neutron scattering to systematically investigate the evolution of the low-energy spin excitations of the iron arsenide superconductor BaFe2-xNixAs2 as a function of nickel doping x. In the undoped state, BaFe2As2 exhibits a tetragonal-to-orthorhombic structural phase transition and simultaneously develops a collinear antiferromagnetic (AF) order below TN = 143 K. Upon electron-doping of x = 0.075 to induce bulk superconductivity with Tc = 12.3 K, the AF ordering temperature reduces to TN = 58 K.We show that the appearance of bulk superconductivity in BaFe1.925Ni0.075As2 coincides with a dispersive neutron spin resonance in the spin excitation spectra, and a reduction in the static ordered moment. For optimally doped BaFe1.9Ni0.1As2 (Tc = 20 K) and overdoped BaFe1.85Ni0.15As2 (Tc = 15 K) superconductors, the static AF long-range order is completely suppressed and the spin excitation spectra are dominated by a resonance and spin-gap at lower energies. We determine the electron-doping dependence of the neutron spin resonance and spin gap energies, and demonstrate that the three-dimensional nature of the resonance survives into the overdoped regime. If spin excitations are important for superconductivity, these results would suggest that the three-dimensional character of the electronic superconducting gaps are prevalent throughout the phase diagram, and may be critical for superconductivity in these materials

    Three-dimensional Resonance in superconducting BaFe1.9_{1.9}Ni0.1_{0.1}As2_2

    Get PDF
    We use inelastic neutron scattering to study magnetic excitations of the FeAs-based superconductor BaFe1.9_{1.9}Ni0.1_{0.1}As2_2 above and below its superconducting transition temperature Tc=20T_c=20 K. In addition to gradually open a spin gap at the in-plane antiferromagnetic ordering wavevector (1,0,0)(1,0,0), the effect of superconductivity is to form a three dimensional resonance with clear dispersion along the c-axis direction. The intensity of the resonance develops like a superconducting order parameter, and the mode occurs at distinctively different energies at (1,0,0)(1,0,0) and (1,0,1)(1,0,1). If the resonance energy is directly associated with the superconducting gap energy Δ\Delta, then Δ\Delta is dependent on the wavevector transfers along the c-axis. These results suggest that one must be careful in interpreting the superconducting gap energies obtained by surface sensitive probes such as scanning tunneling microscopy and angle resolved photoemission.Comment: 5 pages, 4 figure

    Magnetoelastic hybrid excitations in CeAuAl3_3

    Get PDF
    The interactions between elementary excitations such as phonons, plasmons, magnons, or particle-hole pairs, drive emergent functionalities and electronic instabilities such as multiferroic behaviour, anomalous thermoelectric properties, polar order, or superconductivity. Whereas various hybrid excitations have been studied extensively, the feed-back of prototypical elementary excitations on the crystal electric fields (CEF), defining the environment in which the elementary excitations arise, has been explored for very strong coupling only. We report high-resolution neutron spectroscopy and ab-initio phonon calculations of {\ceaual}, an archetypal fluctuating valence compound. The high resolution of our data allows us to quantify the energy scales of three coupling mechanisms between phonons, CEF-split localized 4f electron states, and conduction electrons. Although these interactions do not appear to be atypically strong for this class of materials, we resolve, for the first time, a profound renormalization of low-energy quasiparticle excitations on all levels. The key anomalies of the spectrum we observe comprise (1) the formation of a CEF-phonon bound state with a comparatively low density of acoustic phonons reminiscent of vibronic modes observed in other materials, where they require a pronounced abundance of optical phonons, (2) an anti-crossing of CEF states and acoustic phonons, and (3) a strong broadening of CEF states due to the hybridization with more itinerant excitations. The fact that all of these features are well resolved in CeAuAl3_3 suggests that similar hybrid excitations should also be dominant in a large family of related materials. This promises a predictive understanding towards the discovery of new magneto-elastic functionalities and instabilities.Comment: 9 pages, 4 figure

    Low-temperature antiferromagnetic order in orthorhombic CePdAl3_{3}

    Full text link
    We report the magnetization, ac susceptibility, and specific heat of optically float-zoned single crystals of CePdAl3_{3}. In comparison to the properties of polycrystalline CePdAl3_{3} reported in the literature, which displays a tetragonal crystal structure and no long-range magnetic order, our single crystals exhibit an orthorhombic structure (CmcmCmcm) and order antiferromagnetically below a N\'eel temperature TNT_{\rm N} = 5.6 K. The specific heat at zero-field shows a clear λ\lambda-type anomaly with a broad shoulder at TNT_{\rm N}. A conservative estimate of the Sommerfeld coefficient of the electronic specific heat, γ=121 mJ K2 mol1\gamma = 121~\mathrm{mJ~K^{-2}~mol^{-1}}, indicates a moderately enhanced heavy-fermion ground state. A twin microstructure evolves in the family of planes spanned by the basal plane lattice vectors aoa_{\rm o} and coc_{\rm o}, with the magnetic hard axis bob_{\rm o} common to all twins. The antiferromagnetic state is characterized by a strong magnetic anisotropy and a spin-flop transition induced under magnetic field along the easy direction, resulting in a complex magnetic phase diagram. Taken together our results reveal a high sensitivity of the magnetic and electronic properties of CePdAl3_{3} to its structural modifications
    corecore